Technical and Economic Feasibility Studies for Existing Building Commissioning
Learning Objectives

Gain An Understanding Of The Basic Concepts And Methodologies For The Economic Evaluations Used In EBCX Reports

- End Use Reconciliation
- Raw Electric Data Analysis
- Financial Calculations
- More Detailed Calculations
 - Spreadsheet Calculations
 - Hourly Modeling Calculations
End Use Reconciliation and Calibration

- A quick but powerful way to put energy project estimates into a reasonable range
- Check energy savings calc results for reasonableness
- Calibration is checking the estimated energy use against actual history
Start with electricity

- Electricity typically has the widest variety of end-uses
- Applies to other fuels and total utility bills as well
What do you need to know?

- kW vs. kWh
- Equivalent Full Load Hours
 - Varies by location and type of business
 - Use ASHRAE HVAC Applications and other sources
Need to know (cont)

- Lighting – W/ft2
- Plug loads – W/ft2
- HVAC Fans – total kW
- HVAC Cooling - total kW
- Other – electric heat, air compressors, process loads, large kitchen, data centers, etc.
End Use Calculations

- \((W/ft^2) \times (\text{Building or Space ft}^2) \times (\text{EFLH}) / 1000 = \text{kWh}\)
- \((\text{Connected kW}) \times (\text{EFLH}) = \text{kWh}\)
Square Footage = 105,000 ft²

<table>
<thead>
<tr>
<th>Equipment</th>
<th>W/ft²</th>
<th>kW</th>
<th>EFLH</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>1.4</td>
<td>3000</td>
<td>441,000</td>
<td></td>
</tr>
<tr>
<td>Plug Loads, Misc equip</td>
<td>1.0</td>
<td>3000</td>
<td>315,000</td>
<td></td>
</tr>
<tr>
<td>HVAC Fans</td>
<td>68</td>
<td>5000</td>
<td>339,430</td>
<td></td>
</tr>
<tr>
<td>HVAC Cooling</td>
<td>195</td>
<td>1000</td>
<td>194,700</td>
<td></td>
</tr>
<tr>
<td>Electric Heat</td>
<td>180</td>
<td>1400</td>
<td>252,000</td>
<td></td>
</tr>
</tbody>
</table>

Total				
			1,542,130	
Total Annual from Bills				1,579,200

% diff 2%
- Electric Heat: 16%
- Lighting: 29%
- Plug Loads, Misc equip: 20%
- HVAC Cooling: 13%
- HVAC Fans: 22%
Square Footage = 167,000 ft2

<table>
<thead>
<tr>
<th>Equipment</th>
<th>W/ft2</th>
<th>kW</th>
<th>EFLH</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>1.2</td>
<td></td>
<td>3380</td>
<td>677,352</td>
</tr>
<tr>
<td>Plug Loads Misc equip</td>
<td>0.75</td>
<td></td>
<td>3380</td>
<td>445,932</td>
</tr>
<tr>
<td>AC1 & AC2</td>
<td>201</td>
<td>2200</td>
<td></td>
<td>441,539</td>
</tr>
<tr>
<td>WSHPs</td>
<td></td>
<td></td>
<td>2049</td>
<td>2,049,922</td>
</tr>
<tr>
<td>Cooling Towers</td>
<td>45</td>
<td>1075</td>
<td></td>
<td>48,117</td>
</tr>
<tr>
<td>Kitchen</td>
<td></td>
<td></td>
<td></td>
<td>158,241</td>
</tr>
<tr>
<td>Pumps</td>
<td>36</td>
<td>8760</td>
<td></td>
<td>315,181</td>
</tr>
<tr>
<td>Boiler</td>
<td>570</td>
<td>500</td>
<td></td>
<td>285,000</td>
</tr>
<tr>
<td>Data Center</td>
<td></td>
<td></td>
<td></td>
<td>3,791,725</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>851</td>
<td></td>
<td>8,213,009</td>
</tr>
</tbody>
</table>

Total Annual from Bills EPO Cal 2009 8,151,408

% diff -1%
A pie chart showing energy consumption. The chart includes the following categories:

- **Data Center**: 3,791,725 kWh, 46%
- **WSHPs**: 2,049,922 kWh, 25%
- **Pumps**: 315,181 kWh, 4%
- **Boiler**: 285,000 kWh, 4%
- **Kitchen**: 48,117 kWh, 1%
- **Plug Loads Misc equip**: 445,932 kWh, 5%
- **AC1 & AC2**: 441,539 kWh, 5%

The chart indicates that the Data Center is the largest consumer of energy, followed by WSHPs and other categories like Pumps and Boiler.
End-Use Reconciliation Method

- Gather equipment information and building characteristics
- Estimate EFLH of equipment
- Sum total kWh
- Compare to utility bills
End-Use Reconciliation Method (cont)

- Is your estimate within 10%?
- Are the utility bills correct? Right building? Right account?
- What would you change to get the estimates to be closer?
- Are you missing equipment?
Example: End Use off by 20%

- Would need to change lighting and plug loads to > 3500 EFLH to true-up to < 10%
- Possible explanations:
 - Missing equipment in the End-Use
 - Other equipment (cooling, heating, etc) actually running with more EFLH
 - Lighting and/or plug loads are actually running far too many hours => a quick, easy, inexpensive energy efficiency measure
Example: Cooling

- From the first end use reconciliation, estimated about 195,000 kWh/yr in cooling.
- You (or a vendor) estimate savings of 10% = 19,500 kWh/yr.
- At $0.10/kWh = $1,950/yr.
- Owner desires < 3 yr payback.
- Can support ~ $6,000 project before incentives.
Example: Cooling (cont)

- Supports RCx, controls upgrades, re-programming controls, etc.
- Does not support major capital projects, cooling equipment replacement, etc.
Example: Lighting

- Lighting vendor does a study
- Says they can save you 220,000 kWh/yr on lighting
- Does this make sense?
- From the end-use reconciliation, lighting accounted for ~440,000 kWh/yr. Estimating approximately 50% savings.
- Makes sense for some types of projects (some controls, Metal Halide->High Intensity Fluorescent) but not for others T8->HE T8
Raw Electric Data Analysis

- Examining 15 minute electric data for opportunities
- 2D Map powerful method of viewing every 15 minutes of data for an entire year
Average Profiles

- Weekend vs. Weekday
- Late night, early morning (10pm->6am)
- Spring, Summer, Fall, Winter
 - Extra emphasis on summer, many regions the electric rates are (much) higher
- Annual Peak vs. Summer Peak vs. Weekday
 - Average
- Profile of a day you know a lot about
Average Profiles (cont)
Load Duration Curve

- % of time at or above the listed demand
- Quickly shows if you are hitting an infrequent peak
- Quickly shows if operating hours are similar to what’s expected
At ~1275 kW or above 10% of the year (876 hrs)

Sharp 200 kW spike for 1% of year => May need demand limiting

Sharp drop at 42%

Shoulder hours of occupancy

Unoccupied operation 50% of the hours of the year
Economic Feasibility

- Simple Payback
- Return on Investment
- Cash Flow Opportunity Tool Calculator
The Business Case for Energy Efficiency

- Often energy projects are looked at simply in terms of simple payback
- Many good business reasons to get serious about energy management
Business Case

- Reduced Operating Costs
- Increased Productivity and Sales (e.g. Daylighting study)
- Reduced Vulnerability to Energy Price Fluctuations
- Enhanced Public Image
- Enhanced Reputation within the Financial Community as a Well Managed Company
- Enhanced Appeal to Socially Responsible Investors and Shoppers/Patrons
- Market Opportunity for Energy Efficient Product Sales
Simple Payback

- Frequently Used
- Poor Indicator Of Success of Project
- Uses very few inputs
- Energy Projects often suffer when using this indicator, compared to other types of projects
- What’s the simple payback of leather seats in a car? Of building an atrium in a building?
- Simple, easily understood
Simple Payback - Calculation

- SPB = Investment Amount / Yearly Benefit
- Example
 - SPB = $100,000 / $50,000 = 2 yrs
- Provides guidance to determine if energy calculations are reasonable
Return on Investment

- Less frequently used, but a better indicator
- Still very simple
- Frames the conversation differently – does not have the stigma of “years”
- Expressed in %
- Many different ways to calculate, we’ll use the simple one
ROI Calculation

- **ROI** = Yearly Benefit / Investment Amount

- **Example**
 - SPB = $50,000 / $100,000 = 50%

- We can relate this to things we know, such as current interest rates from a bank.
Re-Framing the Conversation with ROI

- If ROI > Cost of Capital, it’s generally a good project.
 - Cost of Capital is the interest paid on debt (and the dividends paid to investors).

- Re-frames the conversation, because we’re NOT talking about:
 - How much money does the company have for projects
 - What’s in the budget for next year
 - What was in the budget last year
Re-Framing the Conversation with ROI

- Now we’re talking about whether there are any better investments on the table

 AND

- Can we obtain funds somehow (loans, lease) at a rate that is lower than the energy project ROI
Cash Flow Opportunity Tool Calculator

- Tool created by EPA to help re-frame the conversation around energy projects
- Available for free download:
 http://www.energystar.gov/index.cfm?c=assess_value.financial_tools
Cash Flow Opportunity Calculator

- Cash Flow
 - Fast-track financing vs. waiting for cash

- Cost of Delay
 - Waiting for a better interest rate
Cash Flow

COST OF DELAY and CASH FLOW ANALYSIS

Project Cost Impact

- **Project Cost:** $100,000
- **Simple Payback:** 3 years
- **Interest Rate:** 5.00%
- **Financing Term:** 10 years
- **Year(s) Postponed:** 1 year
- **Project Cost Increase Due to Postponement:** 0.00%
- **Estimated Energy Cost Change in Year 2:** 0.00%
- **Annual Change in Energy Cost After Year 2:** 0.00%
- **Estimated Energy Savings in Year 1:** 0.00%

These cash flow calculations are on a pretax basis. For purposes of this calculation, all cash flows are being discounted at the interest rate indicated in cell G7 - financing paid monthly in arrears.

Net Present Value

- **Net Present Value of Option A (Fast Track Financing):** $146,853
- **Net Present Value of Option B (Waiting for Cash):** $78,846

Fast Track Financing generates $68,008 or 86% more cash than waiting!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0</td>
<td>($12,728)</td>
<td>($12,728)</td>
<td>($12,728)</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>2</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$7,878</td>
<td>$0</td>
<td>($150,000)</td>
<td>($150,000)</td>
<td>($150,000)</td>
</tr>
<tr>
<td>3</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$28,403</td>
<td>$33,333</td>
<td>$0</td>
<td>$33,333</td>
<td>$33,333</td>
</tr>
<tr>
<td>4</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$49,089</td>
<td>$33,333</td>
<td>$0</td>
<td>$33,333</td>
<td>$33,333</td>
</tr>
<tr>
<td>5</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$69,694</td>
<td>$33,333</td>
<td>$0</td>
<td>$33,333</td>
<td>$33,333</td>
</tr>
<tr>
<td>6</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$90,333</td>
<td>$33,333</td>
<td>$0</td>
<td>$33,333</td>
<td>$33,333</td>
</tr>
<tr>
<td>7</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$110,933</td>
<td>$33,333</td>
<td>$0</td>
<td>$33,333</td>
<td>$33,333</td>
</tr>
<tr>
<td>8</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$131,538</td>
<td>$33,333</td>
<td>$0</td>
<td>$33,333</td>
<td>$33,333</td>
</tr>
<tr>
<td>9</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$152,143</td>
<td>$33,333</td>
<td>$0</td>
<td>$33,333</td>
<td>$33,333</td>
</tr>
<tr>
<td>10</td>
<td>$33,333</td>
<td>($12,728)</td>
<td>$20,605</td>
<td>$172,748</td>
<td>$33,333</td>
<td>$0</td>
<td>$33,333</td>
<td>$33,333</td>
</tr>
</tbody>
</table>

Option A (Fast Track Financing)

Option B (Waiting for Cash)

Cumulative Cash Flow
Cost of Delay

Comparative Interest Rate Analysis

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate of higher financing</td>
<td>5.00</td>
<td>%</td>
</tr>
<tr>
<td>Interest rate of a lower financing</td>
<td>4.00</td>
<td>%</td>
</tr>
<tr>
<td>Cost of the equipment</td>
<td>$100,000</td>
<td></td>
</tr>
<tr>
<td>Simple payback</td>
<td>3</td>
<td>year(s)</td>
</tr>
<tr>
<td>Potential annual savings</td>
<td>$33,333</td>
<td></td>
</tr>
<tr>
<td>Term of financing</td>
<td>10</td>
<td>year(s)</td>
</tr>
<tr>
<td>Lower interest rate savings*</td>
<td>$4,800</td>
<td></td>
</tr>
<tr>
<td>Amount lost in utility bills</td>
<td>$2,800</td>
<td>/month</td>
</tr>
<tr>
<td>Break-Even Point</td>
<td>1.7</td>
<td>month(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Lower Interest rate savings balance at beginning of month</th>
<th>Amount lost in monthly utility bills</th>
<th>Lower Interest rate savings balance at end of month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$4,800</td>
<td>$2,800</td>
<td>$2,000</td>
</tr>
<tr>
<td>2</td>
<td>$2,000</td>
<td>$2,800</td>
<td>-$800</td>
</tr>
<tr>
<td>3</td>
<td>-$800</td>
<td>$2,800</td>
<td>-$3,600</td>
</tr>
<tr>
<td>4</td>
<td>-$3,600</td>
<td>$2,800</td>
<td>-$6,400</td>
</tr>
<tr>
<td>5</td>
<td>-$6,400</td>
<td>$2,800</td>
<td>-$9,100</td>
</tr>
<tr>
<td>6</td>
<td>-$9,100</td>
<td>$2,800</td>
<td>-$11,900</td>
</tr>
<tr>
<td>7</td>
<td>-$11,900</td>
<td>$2,800</td>
<td>-$14,700</td>
</tr>
<tr>
<td>8</td>
<td>-$14,700</td>
<td>$2,800</td>
<td>-$17,500</td>
</tr>
<tr>
<td>9</td>
<td>-$17,500</td>
<td>$2,800</td>
<td>-$20,200</td>
</tr>
<tr>
<td>10</td>
<td>-$20,200</td>
<td>$2,800</td>
<td>-$23,000</td>
</tr>
<tr>
<td>11</td>
<td>-$23,000</td>
<td>$2,800</td>
<td>-$25,800</td>
</tr>
<tr>
<td>12</td>
<td>-$25,800</td>
<td>$2,800</td>
<td>-$28,600</td>
</tr>
</tbody>
</table>

*Lower Interest Rate Savings number is calculated by taking the NPV of the difference between the two monthly payments (immediate versus lower financing rates), discounted at the lower interest rate.

Important Notice
Opportunity Cost

- Very real – energy savings is a real profit center like any other
- Delaying energy projects can mean throwing money away
Energy Savings Calculations

- Methods
 - Spreadsheet modeling
 - Building Information Modeling (BIM)

- Pros/Cons for each

- “Best” approach depends on complexity of project as well as financial elements (incentive structure – shared savings vs. one-time check vs. pay-for-performance)
Spreadsheet Modeling

- A way to target specific end-uses quickly
- Lots of control over the variables and calculation methodologies
- Easy to create spreadsheets that can be used repeatedly for a number of situations
- But... tend to ignore interactive effects
Example

<table>
<thead>
<tr>
<th>Weather</th>
<th>Existing</th>
<th>Typical Occupancy</th>
<th>Low Occupancy</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg DB Bin Temp</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>67.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>62.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>57.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>52.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>47.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>42.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>37.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>32.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>27.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>22.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>17.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>12.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
<tr>
<td>7.5°F</td>
<td>72.5°F</td>
<td>73°F</td>
<td>4.545°F</td>
<td>27°F</td>
</tr>
</tbody>
</table>

TOTALS: 8,760 45.415 3,171 16,360 6,569 5,234 23,822 0
Hourly Modeling

- Lots of programs to use...
- eQUEST, Trane TRACE, EnergyPro, HAP, etc.
- **Pros:** Can get very detailed models with nearly unlimited energy efficiency measures
- **Cons:** Black box; often have to obtain and understand many details of the model to get good results.
eQUEST

- eQUEST can be tried for free
- Built in wizard has many efficiency measures
- But...
 - No tech support – users have to rely on each other via internet forums for assistance
 - Steep learning curve once you dig into the details
eQUEST for EBCx

- Outside air flow
- Economizer operation
- Setpoints of many kinds
- Schedules of many kinds
- Equipment efficiency
- VAV box minimum positions
- Constant vs. Variable speed
- Control strategies (optimum start/stop, resets, etc.)
- Many more with some creativity and patience…
Summary

- Use end use reconciliations and simple calculations to get a reasonable estimate.
- Use detailed modeling:
 - If it passes the simple calculations,
 - If required or if it is worth the expense.
- Use financial tools such as ROI and the CFO Tool to reframe the conversation of energy projects.